SVG Image From AI for Science to Agentic Science: A Survey on Autonomous Scientific Discovery

Shanghai Artificial Intelligence Laboratory1, Zhejiang University2, Fudan University3, University of British Columbia4, Tongji University5, Stony Brook University6 Shanghai Jiaotong University7, Lingang Laboratory8, Tsinghua University9, Chinese University of Hong Kong10,

Abstract

The role of artificial intelligence (AI) in scientific research is undergoing a fundamental evolution, progressing from specialized computational tools to autonomous partners in discovery. This transformation culminates in the emerging paradigm of Agentic Science, where AI systems operate as goal-directed agents capable of orchestrating the entire scientific process. While existing surveys have explored AI's role in high-level research workflows, a detailed examination of how agentic systems are enabling autonomous scientific discovery in the natural sciences remains absent. We offer a comprehensive synthesis of the emerging Agentic Science paradigm, with a dedicated focus on its impact across life sciences, chemistry, materials science, and physics. We establish a conceptual foundation by delineating the evolutionary stages of AI in science and defining the five core capabilities and four-stage operational workflow of scientific agents. Through a systematic review, we examine how such agents are utilized to generate hypotheses, design and conduct experiments, and interpret findings—highlighting domain-specific advances from drug discovery to materials engineering. By identifying key challenges and future opportunities, this work offers a methodological roadmap for developing the next generation of AI agents, heralding a new era where AI becomes a creative and collaborative partner in accelerating scientific discovery.

Paper List

Fully Autonomous Research Pipeline

  • SciMaster: Towards General-Purpose Scientific AI Agents, Part I. X-Master as Foundation: Can We Lead on Humanity's Last Exam?, Jingyi Chai et al. arXiv 2025
  • NovelSeek: When Agent Becomes the Scientist--Building Closed-Loop System from Hypothesis to Verification, Bo Zhang et al. arXiv 2025
  • Large language models for automated open-domain scientific hypotheses discovery, Zonglin Yang et al. arXiv 2023
  • Maps: A multi-agent framework based on big seven personality and socratic guidance for multimodal scientific problem solving, Jian Zhang et al. arXiv 2025
  • Agentrxiv: Towards collaborative autonomous research, Samuel Schmidgall et al. arXiv 2025
  • Dolphin: Closed-loop open-ended auto-research through thinking, practice, and feedback, Jiakang Yuan et al. arXiv 2025
  • Towards an AI co-scientist, Juraj Gottweis et al. arXiv 2025
  • The AI scientist: Towards fully automated open-ended scientific discovery, Chris Lu et al. arXiv 2024
  • The virtual lab: AI agents design new SARS-CoV-2 nanobodies with experimental validation, Kyle Swanson et al. bioRxiv 2024
  • SpatialAgent: An autonomous AI agent for spatial biology, Hanchen Wang et al. bioRxiv 2025
  • Biomni: A general-purpose biomedical AI agent, Kexin Huang et al. bioRxiv 2025
  • Automating exploratory proteomics research via language models, Ning Ding et al. arXiv 2024
  • Matpilot: An LLM-enabled AI materials scientist under the framework of human-machine collaboration, Ziqi Ni et al. arXiv 2024
  • Tora: A tool-integrated reasoning agent for mathematical problem solving, Zhibin Gou et al. arXiv 2023
  • STELLA: Self-Evolving LLM Agent for Biomedical Research, Ruofan Jin et al. arXiv 2025
  • Two heads are better than one: A multi-agent system has the potential to improve scientific idea generation, Haoyang Su et al. arXiv 2024
  • Dora AI scientist: Multi-agent virtual research team for scientific exploration discovery and automated report generation, Vladimir Naumov et al. bioRxiv 2025
  • DiscoveryWorld: A virtual environment for developing and evaluating automated scientific discovery agents, Peter Jansen et al. NeurIPS 2024
  • Autonomous chemical research with large language models, Daniil A. Boiko et al. Nature 2023
  • ResearchAgent: Iterative research idea generation over scientific literature with large language models, Jinheon Baek et al. arXiv 2024
  • Agent laboratory: Using LLM agents as research assistants, Samuel Schmidgall et al. arXiv 2025
  • Agent hospital: A simulacrum of hospital with evolvable medical agents, Junkai Li et al. arXiv 2024
  • Conversational health agents: A personalized LLM-powered agent framework, Mahyar Abbasian et al. arXiv 2023
  • An automatic end-to-end chemical synthesis development platform powered by large language models, Yixiang Ruan et al. Nature Communications 2024
  • AlphaEvolve: A coding agent for scientific and algorithmic discovery, Alexander Novikov et al. arXiv 2025
  • Accelerated end-to-end chemical synthesis development with large language models, Yixiang Ruan et al. arXiv 2024

Agentic Life Science Research

General Frameworks and Methodologies

  • Biomni: A General-Purpose Biomedical AI Agent, Kexin Huang et al. bioRxiv 2025
  • STELLA: Self-Evolving LLM Agent for Biomedical Research, Ruofan Jin et al. arXiv 2025
  • From Intention to Implementation: Automating Biomedical Research via LLMs, Yi Luo et al. Science China Information Sciences 2025
  • PiFlow: Principle-aware Scientific Discovery with Multi-Agent Collaboration, Yingming Pu et al. arXiv 2025
  • Empowering Biomedical Discovery with AI Agents, Shanghua Gao et al. Cell 2024

Genomics, Transcriptomics and Multi-Omics Analysis

  • GeneAgent: Self-verification Language Agent for Gene Set Knowledge Discovery using Domain Databases, Zhizheng Wang et al. arXiv 2024
  • BioInformatics Agent (BIA): Unleashing the Power of Large Language Models to Reshape Bioinformatics Workflow, Qi Xin et al. bioRxiv 2024
  • CellAgent: An LLM-driven Multi-Agent Framework for Automated Single-cell Data Analysis, Yihang Xiao et al. bioRxiv 2024
  • Toward a Team of AI-Made Scientists for Scientific Discovery from Gene Expression Data, Haoyang Liu et al. arXiv 2024
  • CRISPR-GPT: An LLM Agent for Automated Design of Gene-Editing Experiments, Kaixuan Huang et al. arXiv 2024
  • SpatialAgent: An Autonomous AI Agent for Spatial Biology, Hanchen Wang et al. bioRxiv 2025
  • PhenoGraph: A Multi-Agent Framework for Phenotype-Driven Discovery in Spatial Transcriptomics Data Augmented with Knowledge Graphs, Seyednami Niyakan et al. bioRxiv 2025
  • BioAgents: Democratizing Bioinformatics Analysis with Multi-Agent Systems, Nikita Mehandru et al. arXiv 2025
  • BioMaster: Multi-Agent System for Automated Bioinformatics Analysis Workflow, Houcheng Su et al. bioRxiv 2025
  • TransAgent: Dynamizing Transcriptional Regulation Analysis via Multi-Omics-Aware AI Agent, Guorui Zhang et al. bioRxiv 2025
  • CompBioAgent: An LLM-Powered Agent for Single-Cell RNA-Seq Data Exploration, Haotian Zhang et al. bioRxiv 2025
  • PerTurboAgent: A Self-Planning Agent for Boosting Sequential Perturb-seq Experiments, Minsheng Hao et al. bioRxiv 2025
  • PROTEUS: Automating Exploratory Multiomics Research via Language Models, Ning Ding et al. arXiv 2024/2025
  • CellVoyager: AI CompBio Agent Generates New Insights by Autonomously Analyzing Biological Data, Samuel Alber et al. bioRxiv 2025
  • AstroAgents: A Multi-Agent AI for Hypothesis Generation from Mass Spectrometry Data, Daniel Saeedi et al. arXiv 2025
  • BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments, Yusuf Roohani et al. arXiv 2024

Protein Science and Engineering

  • ProtAgents: Protein Discovery via Large Language Model Multi-Agent Collaborations Combining Physics and Machine Learning, Alireza Ghafarollahi et al. Digital Discovery 2024
  • Sparks: Multi-Agent Artificial Intelligence Model Discovers Protein Design Principles, Alireza Ghafarollahi et al. arXiv 2025

Drug and Therapeutic Discovery

  • The Virtual Lab: AI Agents Design New SARS-CoV-2 Nanobodies with Experimental Validation, Kyle Swanson et al. bioRxiv 2024
  • OriGene: A Self-Evolving Virtual Disease Biologist Automating Therapeutic Target Discovery, Zhongyue Zhang et al. bioRxiv 2025
  • Large Language Model Agent for Modular Task Execution in Drug Discovery, Janghoon Ock et al. arXiv 2025
  • TxAgent: An AI Agent for Therapeutic Reasoning Across a Universe of Tools, Shanghua Gao et al. arXiv 2025
  • Robin: A Multi-Agent System for Automating Scientific Discovery, Ali Essam Ghareeb et al. arXiv 2025
  • DrugAgent: Automating AI-Aided Drug Discovery Programming Through LLM Multi-Agent Collaboration, Sizhe Liu et al. arXiv 2024
  • LIDDIA: Language-Based Intelligent Drug Discovery Agent, Reza Averly et al. arXiv 2025
  • PharmAgents: Building a Virtual Pharma with Large Language Model Agents, Bowen Gao et al. arXiv 2025
  • CLADD: RAG-Enhanced Collaborative LLM Agents for Drug Discovery, Namkyeong Lee et al. arXiv 2025
  • Tippy: Accelerating Drug Discovery Through Agentic AI, Yao Fehlis et al. arXiv 2025
  • ACEGEN: Reinforcement Learning of Generative Chemical Agents for Drug Discovery, Albert Bou et al. Journal of Chemical Information and Modeling 2024
  • Exploring Modularity of Agentic Systems for Drug Discovery, Laura van Weesep et al. arXiv 2025
  • DO Challenge: Can AI Agents Design and Implement Drug Discovery Pipelines?, Khachik Smbatyan et al. arXiv 2025

Agentic Chemistry Research

General Frameworks and Methodologies

  • ChemCrow: Augmenting large-language models with chemistry tools, Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D. White, Philippe Schwaller. Nature 2024
  • A multiagent-driven robotic AI chemist enabling autonomous chemical research on demand, Tao Song, Man Luo, Xiaolong Zhang, Linjiang Chen, Yan Huang, Jiaqi Cao, Qing Zhu, Daobin Liu, Baicheng Zhang, Gang Zou, et al. Journal of the American Chemical Society 2025
  • MOOSE-Chem: Large Language Models for Rediscovering Unseen Chemistry Scientific Hypotheses, Zonglin Yang, Wanhao Liu, Ben Gao, Tong Xie, Yuqiang Li, Wanli Ouyang, Soujanya Poria, Erik Cambria, Dongzhan Zhou. arXiv 2024
  • MOOSE-Chem3: Toward Experiment-Guided Hypothesis Ranking via Simulated Experimental Feedback, Wanhao Liu, Zonglin Yang, Jue Wang, Lidong Bing, Di Zhang, Dongzhan Zhou, Yuqiang Li, Houqiang Li, Erik Cambria, Wanli Ouyang. arXiv 2025
  • An autonomous large language model agent for chemical literature data mining, Kexin Chen, Hanqun Cao, Junyou Li, Yuyang Du, Menghao Guo, Xin Zeng, Lanqing Li, Jiezhong Qiu, Pheng Ann Heng, Guangyong Chen. arXiv 2024
  • Agent-based learning of materials datasets from the scientific literature, Mehrad Ansari, Seyed Mohamad Moosavi. Digital Discovery 2024
  • ChemAgent: Enhancing LLMs for Chemistry and Materials Science through Tree-Search Based Tool Learning, Mengsong Wu, YaFei Wang, Yidong Ming, Yuqi An, Yuwei Wan, Wenliang Chen, Binbin Lin, Yuqiang Li, Tong Xie, Dongzhan Zhou. arXiv 2025
  • ChemHAS: Hierarchical Agent Stacking for Enhancing Chemistry Tools, Zhucong Li, Bowei Zhang, Jin Xiao, Zhijian Zhou, Fenglei Cao, Jiaqing Liang, Yuan Qi. arXiv 2025
  • ChemToolAgent: The impact of tools on language agents for chemistry problem solving, Botao Yu, Frazier N. Baker, Ziru Chen, Garrett Herb, Boyu Gou, Daniel Adu-Ampratwum, Xia Ning, Huan Sun. arXiv 2024
  • Chemagent: Self-updating library in large language models improves chemical reasoning, Xiangru Tang, Tianyu Hu, Muyang Ye, Yanjun Shao, Xunjian Yin, Siru Ouyang, Wangchunshu Zhou, Pan Lu, Zhuosheng Zhang, Yilun Zhao, et al. arXiv 2025
  • LabUtopia: High-Fidelity Simulation and Hierarchical Benchmark for Scientific Embodied Agents, Rui Li, Zixuan Hu, Wenxi Qu, Jinouwen Zhang, Zhenfei Yin, Sha Zhang, Xuantuo Huang, Hanqing Wang, Tai Wang, Jiangmiao Pang, et al. arXiv 2025
  • Cactus: Chemistry agent connecting tool usage to science, Andrew D. McNaughton, Gautham Krishna Sankar Ramalaxmi, Agustin Kruel, Carter R. Knutson, Rohith A. Varikoti, Neeraj Kumar. ACS Omega 2024
  • AI agents in chemical research: GVIM--an intelligent research assistant system, Kangyong Ma. Digital Discovery 2025
  • MT-Mol: Multi Agent System with Tool-based Reasoning for Molecular Optimization, Hyomin Kim, Yunhui Jang, Sungsoo Ahn. arXiv 2025
  • CSstep: Step-by-step exploration of the chemical space of drug molecules via multi-agent and multi-stage reinforcement learning, Xinhao Che, Yujing Zhao, Qilei Liu, Fang Yu, Hanyu Gao, Lei Zhang. Chemical Engineering Science 2025
  • Agentic Mixture-of-Workflows for Multi-Modal Chemical Search, Tiffany J. Callahan, Nathaniel H. Park, Sara Capponi. arXiv 2025

Organic Synthesis and Reaction Optimization

  • Autonomous chemical research with large language models, Daniil A. Boiko, Robert MacKnight, Ben Kline, Gabe Gomes. Nature 2023
  • Accelerated end-to-end chemical synthesis development with large language models, Yixiang Ruan, Chenyin Lu, Ning Xu, Jian Zhang, Jun Xuan, Jianzhang Pan, Qun Fang, Hanyu Gao, Xiaodong Shen, Ning Ye, et al. ChemRxiv 2024
  • Chemist-X: Large language model-empowered agent for reaction condition recommendation in chemical synthesis, Kexin Chen, Junyou Li, Kunyi Wang, Yuyang Du, Jiahui Yu, Jiamin Lu, Lanqing Li, Jiezhong Qiu, Jianzhang Pan, Yi Huang, et al. arXiv 2023
  • ORGANA: A Robotic Assistant for Automated Chemistry Experimentation and Characterization, Kourosh Darvish, Marta Skreta, Yuchi Zhao, Naruki Yoshikawa, Sagnik Som, Miroslav Bogdanovic, Yang Cao, Han Hao, Haoping Xu, Alán Aspuru-Guzik, et al. Cell 2025
  • Delocalized, asynchronous, closed-loop discovery of organic laser emitters, Felix Strieth-Kalthoff, Han Hao, Vandana Rathore, Joshua Derasp, Théophile Gaudin, Nicholas H. Angello, Martin Seifrid, Ekaterina Trushina, Mason Guy, Junliang Liu, et al. Science 2024
  • AutoChemSchematic AI: A Closed-Loop, Physics-Aware Agentic Framework for Auto-Generating Chemical Process and Instrumentation Diagrams, Sakhinana Sagar Srinivas, Shivam Gupta, Venkataramana Runkana. arXiv 2025

Generative Chemistry and Molecular Design

  • ChatMOF: An autonomous AI system for predicting and generating metal-organic frameworks, Yeonghun Kang, Jihan Kim. Nature 2024
  • System of agentic AI for the discovery of metal-organic frameworks, Theo Jaffrelot Inizan, Sherry Yang, Aaron Kaplan, Yen-Hsu Lin, Jian Yin, Saber Mirzaei, Mona Abdelgaid, Ali H. Alawadhi, KwangHwan Cho, Zhiling Zheng, et al. arXiv 2025
  • OSDA Agent: Leveraging Large Language Models for De Novo Design of Organic Structure Directing Agents, Zhaolin Hu, Yixiao Zhou, Zhongan Wang, Xin Li, Weimin Yang, Hehe Fan, Yi Yang. ICLR 2025
  • ChemReasoner: Heuristic search over a large language model's knowledge space using quantum-chemical feedback, Henry W. Sprueill, Carl Edwards, Khushbu Agarwal, Mariefel V. Olarte, Udishnu Sanyal, Conrad Johnston, Hongbin Liu, Heng Ji, Sutanay Choudhury. arXiv 2024
  • Molecular design in synthetically accessible chemical space via deep reinforcement learning, Julien Horwood, Emmanuel Noutahi. ACS Omega 2020

Computational and Quantum Chemistry

  • El Agente: An autonomous agent for quantum chemistry, Yunheng Zou, Austin H. Cheng, Abdulrahman Aldossary, Jiaru Bai, Shi Xuan Leong, Jorge Arturo Campos-Gonzalez-Angulo, Changhyeok Choi, Cher Tian Ser, Gary Tom, Andrew Wang, et al. Matter 2025
  • Aitomia: Your Intelligent Assistant for AI-Driven Atomistic and Quantum Chemical Simulations, Jinming Hu, Hassan Nawaz, Yuting Rui, Lijie Chi, Arif Ullah, Pavlo O. Dral. arXiv 2025
  • ChemGraph: An Agentic Framework for Computational Chemistry Workflows, Thang D. Pham, Aditya Tanikanti, Murat Keçeli. arXiv 2025
  • xchemagents: Agentic AI for explainable quantum chemistry, Can Polat, Mehmet Tuncel, Mustafa Kurban, Erchin Serpedin, Hasan Kurban. arXiv 2025

Agentic Materials Science Research

General Frameworks and Automated Workflows

  • AILA: Autonomous microscopy experiments through large language model agents, Indrajeet Mandal, Jitendra Soni, Mohd Zaki, Morten M. Smedskjaer, Katrin Wondraczek, Lothar Wondraczek, Nitya Nand Gosvami, NM Krishnan. arXiv 2024
  • Foam-Agent: Towards Automated Intelligent CFD Workflows, Ling Yue, Nithin Somasekharan, Yadi Cao, Shaowu Pan. arXiv 2025
  • ChemGraph: An Agentic Framework for Computational Chemistry Workflows, Thang D. Pham, Aditya Tanikanti, Murat Keçeli. arXiv 2025
  • MechAgents: Large language model multi-agent collaborations can solve mechanics problems, generate new data, and integrate knowledge, Bo Ni, Markus J. Buehler. Extreme Mechanics Letters 2024
  • MatPilot: An LLM-enabled AI materials scientist under the framework of human-machine collaboration, Ziqi Ni, Yahao Li, Kaijia Hu, Kunyuan Han, Ming Xu, Xingyu Chen, Fengqi Liu, Yicong Ye, Shuxin Bai. arXiv 2024
  • LLMatDesign: Autonomous materials discovery with large language models, Shuyi Jia, Chao Zhang, Victor Fung. arXiv 2024
  • MAPPS: Toward Greater Autonomy in Materials Discovery Agents: Unifying Planning, Physics, and Scientists, Lianhao Zhou, Hongyi Ling, Keqiang Yan, Kaiji Zhao, Xiaoning Qian, Raymundo Arróyave, Xiaofeng Qian, Shuiwang Ji. arXiv 2025
  • LLaMP: Large language model made powerful for high-fidelity materials knowledge retrieval and distillation, Yuan Chiang, Elvis Hsieh, Chia-Hong Chou, Janosh Riebesell. arXiv 2024
  • HoneyComb: A flexible LLM-based agent system for materials science, Huan Zhang, Yu Song, Ziyu Hou, Santiago Miret, Bang Liu. arXiv 2024
  • Multicrossmodal Automated Agent for Integrating Diverse Materials Science Data, Adib Bazgir, Yuwen Zhang, et al. arXiv 2025
  • PiFlow: Principle-aware Scientific Discovery with Multi-Agent Collaboration, Yingming Pu, Tao Lin, Hongyu Chen. arXiv 2025
  • dZiner: Rational inverse design of materials with AI agents, Mehrad Ansari, Jeffrey Watchorn, Carla E. Brown, Joseph S. Brown. arXiv 2024
  • Hypothesis Generation for Materials Discovery and Design Using Goal-Driven and Constraint-Guided LLM Agents, Shrinidhi Kumbhar, Venkatesh Mishra, Kevin Coutinho, Divij Handa, Ashif Iquebal, Chitta Baral. arXiv 2025

Structural and Functional Materials

  • AtomAgents: Alloy design and discovery through physics-aware multi-modal multi-agent artificial intelligence, Alireza Ghafarollahi, Markus J. Buehler. arXiv 2024
  • Automating alloy design and discovery with physics-aware multimodal multiagent AI, Alireza Ghafarollahi, Markus J. Buehler. PNAS 2025
  • Rapid and automated alloy design with graph neural network-powered LLM-driven multi-agent systems, Alireza Ghafarollahi, Markus J. Buehler. arXiv 2024
  • metaAgent: Electromagnetic metamaterial discovery through multi-agent collaboration, Jie Tian, Martin Taylor Sobczak, Dhanush Patil, Jixin Hou, Lin Pang, Arunachalam Ramanathan, Libin Yang, Xianyan Chen, Yuval Golan, Xiaoming Zhai, et al. arXiv 2025
  • CrossMatAgent: A Multi-Agent Framework for Accelerated Metamaterial Design, Jie Tian, Martin Taylor Sobczak, Dhanush Patil, et al. arXiv 2025
  • An Agentic Framework for Autonomous Metamaterial Modeling and Inverse Design, Darui Lu, Jordan M. Malof, Willie J. Padilla. arXiv 2025

Advanced and Quantum Materials

  • SciAgents: Automating scientific discovery through bioinspired multi-agent intelligent graph reasoning, Alireza Ghafarollahi, Markus J. Buehler. Advanced Materials 2025
  • PriM: Principle-inspired material discovery through multi-agent collaboration, Zheyuan Lai, Yingming Pu. arXiv 2025
  • TopoMAS: Large Language Model Driven Topological Materials Multiagent System, Baohua Zhang, Xin Li, Huangchao Xu, Zhong Jin, Quansheng Wu, Ce Li. arXiv 2025

Agentic Physics and Astronomy Research

General Frameworks and Methodologies

  • MoRA: Improving physics reasoning in large language models using mixture of refinement agents, Raj Jaiswal, Dhruv Jain, Harsh Parimal Popat, Avinash Anand, Abhishek Dharmadhikari, Atharva Marathe, Rajiv Ratn Shah. arXiv 2024
  • LP-COMDA: Physics-informed LLM-agent for automated modulation design in power electronics systems, Junhua Liu, Fanfan Lin, Xinze Li, Kwan Hui Lim, Shuai Zhao. arXiv 2024
  • LLMSat: A large language model-based goal-oriented agent for autonomous space exploration, David Maranto. arXiv 2024
  • CosmoAgent: What if LLMs have different world views: Simulating alien civilizations with LLM-based agents, Zhaoqian Xue, Beichen Wang, Suiyuan Zhu, Kai Mei, Hua Tang, Wenyue Hua, Mengnan Du, Yongfeng Zhang. arXiv 2024

Astronomy and Cosmology

  • StarWhisper: Agent-based observation assistant system to approach AI astrophysicist, Cunshi Wang, Xinjie Hu, Yu Zhang, Xunhao Chen, Pengliang Du, Yiming Mao, Rui Wang, Yuyang Li, Ying Wu, Hang Yang, et al. arXiv 2024
  • mephisto: Interpreting multi-band galaxy observations with large language model-based agents, Zechang Sun, Yuan-Sen Ting, Yaobo Liang, Nan Duan, Song Huang, Zheng Cai. arXiv 2024
  • AI Agents for ground-based gamma astronomy, Dmitriy Kostunin, Vladimir Sotnikov, Sergo Golovachev, Alexandre Strube. arXiv 2025
  • The AI Cosmologist I: An Agentic System for Automated Data Analysis, Adam Moss. arXiv 2025
  • SimAgents: Bridging Literature and the Universe Via A Multi-Agent Large Language Model System, Xiaowen Zhang, Zhenyu Bi, Xuan Wang, Tiziana Di Matteo, Rupert A.C. Croft. arXiv 2025

Computational Mechanics and Fluid Dynamics

  • OpenFOAMGPT: A RAG-augmented LLM agent for OpenFOAM-based computational fluid dynamics, Sandeep Pandey, Ran Xu, Wenkang Wang, Xu Chu. arXiv 2025
  • OpenFOAMGPT 2.0: End-to-end, trustworthy automation for computational fluid dynamics, Jingsen Feng, Ran Xu, Xu Chu. arXiv 2025
  • LLM-Agent: A Large Language Model-Empowered Agent for Reliable and Robust Structural Analysis, Jiachen Liu, Ziheng Geng, Ran Cao, Lu Cheng, Paolo Bocchini, Minghui Cheng. arXiv 2025
  • MechAgents: Large language model multi-agent collaborations can solve mechanics problems, generate new data, and integrate knowledge, Bo Ni, Markus J. Buehler. Extreme Mechanics Letters 2024
  • AutoGen-FEM: Optimizing Collaboration of Large Language Model Based Agents for Autonomous Finite Element Analysis, Chuan Tian, et al. arXiv 2025

Quantum Computing

  • k-agents: Agents for self-driving laboratories applied to quantum computing, Shuxiang Cao, Zijian Zhang, Mohammed Alghadeer, Simone D. Fasciati, Michele Piscitelli, Mustafa Bakr, Peter Leek, Alán Aspuru-Guzik. arXiv 2024

BibTeX

@misc{wei2025aiscienceagenticscience,
      title={From AI for Science to Agentic Science: A Survey on Autonomous Scientific Discovery}, 
      author={Jiaqi Wei and Yuejin Yang and Xiang Zhang and Yuhan Chen and Xiang Zhuang and Zhangyang Gao and Dongzhan Zhou and Guangshuai Wang and Zhiqiang Gao and Juntai Cao and Zijie Qiu and Xuming He and Qiang Zhang and Chenyu You and Shuangjia Zheng and Ning Ding and Wanli Ouyang and Nanqing Dong and Yu Cheng and Siqi Sun and Lei Bai and Bowen Zhou},
      year={2025},
      eprint={2508.14111},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2508.14111}, 
}